Abstract
In their life cycle, plants are exposed to various unfavorable environmental factors including ultraviolet (UV) radiation emitted by the Sun. UV-A and UV-B, which are partially absorbed by the ozone layer, reach the surface of the Earth causing harmful effects among the others on plant genetic material. The energy of UV light is sufficient to induce mutations in DNA. Some examples of DNA damage induced by UV are pyrimidine dimers, oxidized nucleotides as well as single and double-strand breaks. When exposed to light, plants can repair major UV-induced DNA lesions, i.e., pyrimidine dimers using photoreactivation. However, this highly efficient light-dependent DNA repair system is ineffective in dim light or at night. Moreover, it is helpless when it comes to the repair of DNA lesions other than pyrimidine dimers. In this review, we have focused on how plants cope with deleterious DNA damage that cannot be repaired by photoreactivation. The current understanding of light-independent mechanisms, classified as dark DNA repair, indispensable for the maintenance of plant genetic material integrity has been presented.
Subject
Genetics (clinical),Genetics
Reference268 articles.
1. The Spectroradiometric Measurement of Light Sources. CIE 063-1984http://cie.co.at/publications/spectroradiometric-measurement-light-sources
2. The Measurement of Absolute Luminous Intensity Distributions. CIE 070–1987http://cie.co.at/publications/measurement-absolute-luminous-intensity-distributions
3. Standardization of the Terms UV-A1, UV-A2 and UV-B. 134/1 TC 6http://cie.co.at/publications/cie-collection-photobiology-photochemistry-1999
4. Visible Light and UV Radiation;Moan,2002
5. Wavelength dependence of oxidative DNA damage induced by UV and visible light
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献