Comparative Genomics of the Transport Proteins of Ten Lactobacillus Strains

Author:

Zafar HassanORCID,Saier Milton H.

Abstract

The genus Lactobacillus includes species that may inhabit different anatomical locations in the human body, but the greatest percentage of its species are inhabitants of the gut. Lactobacilli are well known for their probiotic characteristics, although some species may become pathogenic and exert negative effects on human health. The transportome of an organism consists of the sum of the transport proteins encoded within its genome, and studies on the transportome help in the understanding of the various physiological processes taking place in the cell. In this communication we analyze the transport proteins and predict probable substrate specificities of ten Lactobacillus strains. Six of these strains (L. brevis, L. bulgaricus, L. crispatus, L. gasseri, L. reuteri, and L. ruminis) are currently believed to be only probiotic (OP). The remaining four strains (L. acidophilus, L. paracasei, L. planatarum, and L. rhamnosus) can play dual roles, being both probiotic and pathogenic (PAP). The characteristics of the transport systems found in these bacteria were compared with strains (E. coli, Salmonella, and Bacteroides) from our previous studies. Overall, the ten lactobacilli contain high numbers of amino acid transporters, but the PAP strains contain higher number of sugar, amino acid and peptide transporters as well as drug exporters than their OP counterparts. Moreover, some of the OP strains contain pore-forming toxins and drug exporters similar to those of the PAP strains, thus indicative of yet unrecognized pathogenic potential. The transportomes of the lactobacilli seem to be finely tuned according to the extracellular and probiotic lifestyles of these organisms. Taken together, the results of this study help to reveal the physiological and pathogenic potential of common prokaryotic residents in the human body.

Publisher

MDPI AG

Subject

Genetics(clinical),Genetics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3