Characterization of Quantitative Trait Loci for Germination and Coleoptile Length under Low-Temperature Condition Using Introgression Lines Derived from an Interspecific Cross in Rice

Author:

Akhtamov Mirjalol,Adeva Cheryl,Shim Kyu-Chan,Lee Hyun-Sook,Kim Sun Ha,Jeon Yun-A,Luong Ngoc Ha,Kang Ju-Won,Lee Ji-Yoon,Ahn Sang-Nag

Abstract

Previously, five putative quantitative trait loci (QTLs) for low-temperature germination (LTG) have been detected using 96 BC3F8 lines derived from an interspecific cross between the Korean japonica cultivar “Hwaseong” and Oryza rufipogon. In the present study, two introgression lines, CR1517 and CR1518, were used as parents to detect additional QTLs and analyze interactions among QTLs for LTG. The F2 population (154 plants) along with parental lines, Hwaseong and O. rufipogon, were evaluated for LTG and coleoptile length under low-temperature conditions (13 °C). Among five QTLs for LTG, two major QTLs, qLTG1 and qLTG3, were consistently detected at 6 and 7 days after incubation. Three minor QTLs were detected on chromosomes 8 and 10. Two QTLs, qLTG10.1 and qLTG10.2, showing linkage on chromosome 10, exerted opposite effects with the Hwaseong allele at qLTG10.2 and the O. rufipogon allele at qLTG10.1 respectively, in turn, increasing LTG. Interactions among QTLs were not significant, implying that the QTLs act in an additive manner. Near-isogenic line plants with the combination of favorable alleles from O. rufipogon and Hwaseong exhibited higher LTG than two introgression lines. With regard to coleoptile length, three QTLs observed on chromosomes 1, 3, and 8 were colocalized with QTLs for LTG, suggesting the pleiotropy of the single gene at each locus. According to the results, the introgression of favorable O. rufipogon alleles could hasten the development of rice with high LTG and high coleoptile elongation in japonica cultivars.

Funder

Rural Development Administration

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

Publisher

MDPI AG

Subject

Genetics (clinical),Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3