Abstract
Gastrulation drives the establishment of three germ layers and embryonic axes during frog embryonic development. Mesodermal cell fate specification and morphogenetic movements are vital factors coordinating gastrulation, which are regulated by numerous signaling pathways, such as the Wnt (Wingless/Integrated), Notch, and FGF (Fibroblast growth factor) pathways. However, the coordination of the Notch and FGF signaling pathways during gastrulation remains unclear. We identified a novel helix–loop–helix DNA binding domain gene (Hes5.9), which was regulated by the FGF and Notch signaling pathways during gastrulation. Furthermore, gain- and loss-of-function of Hes5.9 led to defective cell migration and disturbed the expression patterns of mesodermal and endodermal marker genes, thus interfering with gastrulation. Collectively, these results suggest that Hes5.9 plays a crucial role in cell fate decisions and cell migration during gastrulation, which is modulated by the FGF and Notch signaling pathways.
Subject
Genetics(clinical),Genetics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献