Rapid and Efficient Regeneration of Populus ussuriensis Kom. from Root Explants through Direct De Novo Shoot Organogenesis

Author:

Yang Shuyu,Liu Runze,Li WenlongORCID,Jing Yanan,Pak Solme,Li Chenghao

Abstract

Populus ussuriensis is an important tree species with high economic and ecologic values. However, traditional sexual propagation is time-consuming and inefficient, challenging afforestation and wood production using P. ussuriensis, and requires a rapid and efficient regeneration system. The present study established a rapid, efficient, and stable shoot regeneration method from root explants in P. ussuriensis using several plant growth regulators. Most shoot buds (15.2 per explant) were induced at high efficiency under WPM medium supplemented with 221.98 μM 6-BA, 147.61 μM IBA, and 4.54 μM TDZ within two weeks. The shoot buds were further multiplicated and elongated under WPM medium supplemented with 221.98 μM 6-BA, 147.61 μM IBA, and 57.74 μM GA3 for four weeks. The average number and efficiency of elongation of multiplication and elongation for induced shoot buds were 75.2 and 78%, respectively. All the shoots were rooted within a week and none of them showed abnormality in rooting. The time spent for the entire regeneration of this direct shoot organogenesis was seven weeks, much shorter than conventional indirect organogenesis with the callus induction phase, and no abnormal growth was observed. This novel regeneration system will not only promote the massive propagation, but also accelerate the genetic engineering studies for trait improvement of P. ussuriensis species.

Funder

National Natural Science Foundation of China

the Fundametal Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

Forestry

Reference61 articles.

1. Progress in tissue culture, genetic transformation and applications of biotechnology to trees: an overview

2. Propagation of citrus species through cutting: A review;Krishan Kumar;J. Med. Plants. Stud.,2018

3. Propagation by cuttings, layering and division;Relf;VCE Publ.,2009

4. Clonal Propagation of Quercus Spp. Using a Container Layering Technique

5. Plant grafting;Charles;Curr. Biol.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3