Abstract
(1) Background: The striped rice stem borer (SRSB), Chilo suppressalis, has severely diminished the yield and quality of rice in China. A timely and accurate prediction of the rice pest population can facilitate the designation of a pest control strategy. (2) Methods: In this study, we applied multiple linear regression (MLR), gradient boosting decision tree (GBDT), and deep auto-regressive (DeepAR) models in the dynamic prediction of the SRSB population occurrence during the crop season from 2000 to 2020 in Hunan province, China, by using weather factors and time series of related pests. (3) Results: This research demonstrated the potential of the deep learning method used in integrated pest management through the qualitative and quantitative evaluation of a reasonable validating dataset (the average coefficient of determination Rmean2 for the DeepAR, GBDT, and MLR models were 0.952, 0.500, and 0.166, respectively). (4) Conclusions: The DeepAR model with integrated ground-based meteorological variables, time series of related pests, and time features achieved the most accurate dynamic forecasting of the population occurrence quantity of SRSB as compared with MLR and GBDT.
Funder
the National Science Fund Project of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献