Abstract
In X-ray tomography image reconstruction, one of the most successful approaches involves a statistical approach with l 2 norm for fidelity function and some regularization function with l p norm, 1 < p < 2 . Among them stands out, both for its results and the computational performance, a technique that involves the alternating minimization of an objective function with l 2 norm for fidelity and a regularization term that uses discrete gradient transform (DGT) sparse transformation minimized by total variation (TV). This work proposes an improvement to the reconstruction process by adding a bilateral edge-preserving (BEP) regularization term to the objective function. BEP is a noise reduction method and has the purpose of adaptively eliminating noise in the initial phase of reconstruction. The addition of BEP improves optimization of the fidelity term and, as a consequence, improves the result of DGT minimization by total variation. For reconstructions with a limited number of projections (low-dose reconstruction), the proposed method can achieve higher peak signal-to-noise ratio (PSNR) and structural similarity index measurement (SSIM) results because it can better control the noise in the initial processing phase.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference42 articles.
1. Radiation Risk to Children From Computed Tomography
2. The Fourier reconstruction of a head section
3. Fan-beam reconstruction methods
4. Computed Tomography—Principles, Design, Artifacts and Recent Advances;Hsieh,2009
5. Computed Tomography—Principles, Design, Artifacts and Recent Advances;Hsieh,2009
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献