A Weak Selection Stochastic Gradient Matching Pursuit Algorithm

Author:

Zhao LiquanORCID,Hu YunfengORCID,Jia Yanfei

Abstract

In the existing stochastic gradient matching pursuit algorithm, the preliminary atomic set includes atoms that do not fully match the original signal. This weakens the reconstruction capability and increases the computational complexity. To solve these two problems, a new method is proposed. Firstly, a weak selection threshold method is proposed to select the atoms that best match the original signal. If the absolute gradient coefficients were greater than the product of the maximum absolute gradient coefficient and the threshold that was set according to the experiments, then we selected the atoms that corresponded to the absolute gradient coefficients as the preliminary atoms. Secondly, if the scale of the current candidate atomic set was equal to the previous support atomic set, then the loop was exited; otherwise, the loop was continued. Finally, before the transition estimation of the original signal was calculated, we determined whether the number of columns of the candidate atomic set was smaller than the number of rows of the measurement matrix. If this condition was satisfied, then the current candidate atomic set could be regarded as the support atomic set and the loop was continued; otherwise, the loop was exited. The simulation results showed that the proposed method has better reconstruction performance than the stochastic gradient algorithms when the original signals were a one-dimensional sparse signal, a two-dimensional image signal, and a low-rank matrix signal.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3