Optimization, 3D-Numerical Validations and Preliminary Experimental Tests of a Wound Rotor Synchronous Machine

Author:

Le Luong Huong Thao,Messine FrédéricORCID,Hénaux Carole,Mariani Guilherme BuenoORCID,Voyer NicolasORCID,Mollov Stefan,Harribey Dominique

Abstract

In this paper, a complete methodology to design a modular brushless wound rotor synchronous machine is proposed. From a schedule of conditions and a chosen structure (with 7 phases, 7 slots and 6 poles), a non-linear and non-convex optimization problem is defined and solved using NOMAD (a derivative free local optimization code): the external volume is minimized under some constraints, which are the average torque equal to 5 Nm, the torque ripple less than 5%, the efficiency greater than 94%, and the surface temperature less than 85 °C. The constraints have to be computed using 2D-finite element simulations in order to reduce the CPU-time consumption for each NOMAD iteration. Moreover, a relaxation of this optimization problem makes it possible to provide an efficient starting point for NOMAD. Thus, a good optimal design is obtained, and it is then validated by using 3D electromagnetic and thermic numerical methods. These numerical verifications show that, inside the end-winding, the leakage flux is high. This yields a lot of iron losses in this machine. Moreover, the surface and coil temperature differences between the 2D and 3D numerical approaches are discussed. Finally, the machine prototype is built following the optimal dimensions and a POKI-POKITM assembly technology. Preliminary experimental tests are carried out, and the results are devoted to the comparison of measured and predicted 3D numerical results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference28 articles.

1. A case study of Getting Performance Characteristics of a Salient Pole Synchronous Hydro Generators;Topaloglu;Elektron. Elektrotechnika,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3