A Data-Driven Clustering Analysis for the Impact of COVID-19 on the Electricity Consumption Pattern of Zhejiang Province, China

Author:

Zhang ZhiangORCID,Cheshmehzangi AliORCID,Ardakani Saeid PourroostaeiORCID

Abstract

The COVID-19 pandemic has impacted electricity consumption patterns and such an impact cannot be analyzed by simple data analytics. In China, specifically, city lock-down policies lasted for only a few weeks and the spread of COVID-19 was quickly under control. This has made it challenging to analyze the hidden impact of COVID-19 on electricity consumption. This paper targets the electricity consumption of a group of regions in China and proposes a new clustering-based method to quantitatively investigate the impact of COVID-19 on the industrial-driven electricity consumption pattern. This method performs K-means clustering on time-series electricity consumption data of multiple regions and uses quantitative metrics, including clustering evaluation metrics and dynamic time warping, to quantify the impact and pattern changes. The proposed method is applied to the two-year daily electricity consumption data of 87 regions of Zhejiang province, China, and quantitively confirms COVID-19 has changed the electricity consumption pattern of Zhejiang in both the short-term and long-term. The time evolution of the pattern change is also revealed by the method, so the impact start and end time can be inferred. Results also show the short-term impact of COVID-19 is similar across different regions, while the long-term impact is not. In some regions, the pandemic only caused a time-shift in electricity consumption; but in others, the electricity consumption pattern has been permanently changed. The data-driven analysis of this paper can be the first step to fully interpret the COVID-19 impact by considering economic and social parameters in future studies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3