The State-of-the-Art Progress in Cloud Detection, Identification, and Tracking Approaches: A Systematic Review

Author:

Sawant ManishaORCID,Shende Mayur KishorORCID,Feijóo-Lorenzo Andrés E.ORCID,Bokde Neeraj DhanrajORCID

Abstract

A cloud is a mass of water vapor floating in the atmosphere. It is visible from the ground and can remain at a variable height for some time. Clouds are very important because their interaction with the rest of the atmosphere has a decisive influence on weather, for instance by sunlight occlusion or by bringing rain. Weather denotes atmosphere behavior and is determinant in several human activities, such as agriculture or energy capture. Therefore, cloud detection is an important process about which several methods have been investigated and published in the literature. The aim of this paper is to review some of such proposals and the papers that have been analyzed and discussed can be, in general, classified into three types. The first one is devoted to the analysis and explanation of clouds and their types, and about existing imaging systems. Regarding cloud detection, dealt with in a second part, diverse methods have been analyzed, i.e., those based on the analysis of satellite images and those based on the analysis of images from cameras located on Earth. The last part is devoted to cloud forecast and tracking. Cloud detection from both systems rely on thresholding techniques and a few machine-learning algorithms. To compute the cloud motion vectors for cloud tracking, correlation-based methods are commonly used. A few machine-learning methods are also available in the literature for cloud tracking, and have been discussed in this paper too.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systematic Review on Ground-Based Cloud Tracking Methods for Photovoltaics Nowcasting;American Journal of Climate Change;2024

2. An Ensemble Approach for Intra-Hour Forecasting of Solar Resource;Energies;2023-09-14

3. Advances in solar forecasting: Computer vision with deep learning;Advances in Applied Energy;2023-09

4. Comparision and analysis of siamese network tracker family;2022 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD);2022-11-30

5. Impact of Multi-Thresholds and Vector Correction for Tracking Precipitating Systems over the Amazon Basin;Remote Sensing;2022-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3