Abstract
Despite the application of vortex tubes for cooling, separating gas mixtures, vacuuming, etc., the mechanism of energy separation in vortex tubes remains an object of discussion. This paper studies the effect of secondary swirling in supersonic flows on the energy separation of monatomic and diatomic gases. The approach used is a numerical solution of the Reynolds-averaged Navier-Stokes equations, closed by the Reynolds Stress Model turbulence model. The modelling provided is for a self-vacuuming vortex tube with air, helium, argon, and carbon dioxide. According to the results of the calculations, the effect of secondary swirling is inherent only in viscous gases. A comparison was made between obtained total temperature difference, the level of secondary swirling and power losses on expansion from the nozzle, compression shocks, friction, turbulence, and energy costs to develop cascaded swirl structures. Our results indicate that helium and argon have the highest swirling degree and, consequently, the highest energy separation. Moreover, it can be concluded that the power costs on the development of cascaded vortex structures have a significant role in the efficiency of energy separation.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference49 articles.
1. Experiments on Expansions in a Vortex with Simultaneous Exhaust of Hot and Cold Air;Ranque;Phys. Radium,1933
2. The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process
3. The vortex tube-internal flow data and a heat transfer theory;Scheper;Refrig. Eng.,1951
4. Ranque’s tube;Fulton;ASHRAE J.,1950
5. On the theory of the Ranque-Hilsch cooling effect
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献