Abstract
The world is currently witnessing a rapid increase in sewage sludge (SS) production, due to the increased demand for wastewater treatment. Therefore, SS management is crucial for the economic and environmental sustainability of wastewater treatment plants. The recovery of nutrients from SS has been identified as a fundamental step to enable the transition from a linear to a circular economy, turning SS into an economic and sustainable source of materials. SS is often treated via anaerobic digestion, to pursue energy recovery via biogas generation. Anaerobically digested sewage sludge (ADS) is a valuable source of organic matter and nutrients, and significant advances have been made in recent years in methods and technologies for nutrient recovery from ADS. The purpose of this study is to provide a comprehensive overview, describing the advantages and drawbacks of the available and emerging technologies for recovery of nitrogen (N), phosphorus (P), and potassium (K) from ADS. This work critically reviews the established and novel technologies, which are classified by their ability to recover a specific nutrient (ammonia stripping) or to allow the simultaneous recovery of multiple elements (struvite precipitation, ion exchange, membrane technologies, and thermal treatments). This study compares the described technologies in terms of nutrient recovery efficiency, capital, and operational costs, as well as their feasibility for full-scale application, revealing the current state of the art and future perspectives on this topic.
Funder
Istituto Nazionale della Previdenza Sociale
European Commission
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献