Abstract
Climate change is changing global weather patterns, with an increase in droughts expected to impact crop yields due to water scarcity. Crops can be provided with water via underground pumping systems to mitigate water shortages. However, the energy required to pump water tends to be expensive and hazardous to the environment. This paper explores different sites in Sudan to assess the crop water requirements as the first stage of developing renewable energy sources based on water pumping systems. The crop water requirements are calculated for different crops using the CROPWAT and CLIMWAT simulation tools from the Food and Agriculture Organization (FAO) of the United Nations. Further, the crop water requirements are translated into electrical energy requirements. Accurate calculations of the energy needed will help in developing cost-effective energy systems that can help in improving yields and reducing carbon emissions. The results suggest that the northern regions tend to have higher energy demands and that the potential for renewable energy should be explored in these regions, which are more susceptible to drought and where crops tend to be under higher stress due to adverse climate conditions.
Funder
Innovate UK
Academy of Medical Sciences
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献