Determination of Maximum Acceptable Standing Phase Angle across Open Circuit Breaker as an Optimisation Task

Author:

Kacejko PiotrORCID,Miller PiotrORCID,Pijarski PawełORCID

Abstract

There are several threats that require the control of the conditions of switching operations in the transmission grid. They result mainly from the negative effects of the high-value current, which may appear after the breaker is closed. Problems considering closing the power circuit breakers on a large standing phase angle (SPA) are often formulated by grid operators. The literature most often discusses the problem of SPA reduction, which allows the system to be restored without the risk of damaging the turbogenerator shafts. This reduction can be achieved by various operational solutions; most often, it is the appropriate adjustment of active power generation, sometimes backed up by partial load shedding. The subject of the presented article is a slightly different approach to the SPA problem. The method of determining the maximum value of SPA for which the connection operation allows to avoid excessive transitional torques was presented. With this approach, finding the maximum value of SPA between the two considered system nodes is treated as an optimisation task. In order to solve it, the original heuristic optimisation method described in the article was applied.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference42 articles.

1. Torsional Fatigue of Turbine-Generator Shafts Caused by Different Electrical System Faults and Switching Operations

2. Effects of Switching Network Disturbances on Turbine-Generator Shaft Systems

3. Influence of disturbances in transmission network on fatigue stresses of shafts of high power turbine sets;Machowski;Wiadomości Elektrotechniczne,2011

4. Standing phase angle reduction at switching operation in transmission network;Kacejko;Rynek Energii,2011

5. Synchroniczne i Asynchroniczne Operacje Łączeniowe w Systemie Elektroenergetycznym [Synchronous and Asynchronous Switching Operations in the Power System];Miller,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3