Evolution of Temperature Field around Underground Power Cable for Static and Cyclic Heating

Author:

Ahmad Shahbaz,Rizvi Zarghaam HaiderORCID,Arp Joan Chetam Christine,Wuttke Frank,Tirth VineetORCID,Islam SaifulORCID

Abstract

Power transmission covering long-distances has shifted from overhead high voltage cables to underground power cable systems due to numerous failures under severe weather conditions and electromagnetic pollution. The underground power cable systems are limited by the melting point of the insulator around the conductor, which depends on the surrounding soils’ heat transfer capacity or the thermal conductivity. In the past, numerical and theoretical studies have been conducted based on the mechanistic heat and mass transfer model. However, limited experimental evidence has been provided. Therefore, in this study, we performed a series of experiments for static and cyclic thermal loads with a cylindrical heater embedded in the sand. The results suggest thermal charging of the surrounding dry sand and natural convection within the wet sand. A comparison of heat transfer for dry, unsaturated and fully saturated sand is presented with graphs and colour maps which provide valuable information and insight of heat and mass transfer around an underground power cable. Furthermore, the measurements of thermal conductivity against density, moisture and temperature are presented showing positive nonlinear dependence.

Funder

Federal Ministry for Economic Affairs and Energy

King Khalid University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3