FusionVision: A Comprehensive Approach of 3D Object Reconstruction and Segmentation from RGB-D Cameras Using YOLO and Fast Segment Anything

Author:

El Ghazouali Safouane1ORCID,Mhirit Youssef2,Oukhrid Ali3,Michelucci Umberto1ORCID,Nouira Hichem4ORCID

Affiliation:

1. TOELT LLC, AI Lab, 8406 Winterthur, Switzerland

2. Independent Researcher, 75000 Paris, France

3. Independent Researcher, 2502 Biel/Bienne, Switzerland

4. LNE Laboratoire National de Metrologie et d’Essaies, 75015 Paris, France

Abstract

In the realm of computer vision, the integration of advanced techniques into the pre-processing of RGB-D camera inputs poses a significant challenge, given the inherent complexities arising from diverse environmental conditions and varying object appearances. Therefore, this paper introduces FusionVision, an exhaustive pipeline adapted for the robust 3D segmentation of objects in RGB-D imagery. Traditional computer vision systems face limitations in simultaneously capturing precise object boundaries and achieving high-precision object detection on depth maps, as they are mainly proposed for RGB cameras. To address this challenge, FusionVision adopts an integrated approach by merging state-of-the-art object detection techniques, with advanced instance segmentation methods. The integration of these components enables a holistic (unified analysis of information obtained from both color RGB and depth D channels) interpretation of RGB-D data, facilitating the extraction of comprehensive and accurate object information in order to improve post-processes such as object 6D pose estimation, Simultanious Localization and Mapping (SLAM) operations, accurate 3D dataset extraction, etc. The proposed FusionVision pipeline employs YOLO for identifying objects within the RGB image domain. Subsequently, FastSAM, an innovative semantic segmentation model, is applied to delineate object boundaries, yielding refined segmentation masks. The synergy between these components and their integration into 3D scene understanding ensures a cohesive fusion of object detection and segmentation, enhancing overall precision in 3D object segmentation.

Publisher

MDPI AG

Reference64 articles.

1. Robotic Online Path Planning on Point Cloud;Liu;IEEE Trans. Cybern.,2016

2. Ding, Z., Sun, Y., Xu, S., Pan, Y., Peng, Y., and Mao, Z. (2023). Recent Advances and Perspectives in Deep Learning Techniques for 3D Point Cloud Data Processing. Robotics, 12.

3. Segmentation of 3D Point Cloud Data Representing Full Human Body Geometry: A Review;Krawczyk;Pattern Recognit.,2023

4. Wu, F., Qian, Y., Zheng, H., Zhang, Y., and Zheng, X. (September, January 28). A Novel Neighbor Aggregation Function for Medical Point Cloud Analysis. Proceedings of the Computer Graphics International Conference, Shanghai, China.

5. Xie, X., Wei, H., and Yang, Y. (2023). Real-Time LiDAR Point-Cloud Moving Object Segmentation for Autonomous Driving. Sensors, 23.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3