Blockchain-Based Context-Aware Authorization Management as a Service in IoT

Author:

Sylla TidianeORCID,Mendiboure LeoORCID,Chalouf Mohamed AymenORCID,Krief FrancineORCID

Abstract

Internet of Things (IoT) applications bring evolved and intelligent services that can help improve users’ daily lives. These applications include home automation, health care, and smart agriculture. However, IoT development and adoption face various security and privacy challenges that need to be overcome. As a promising security paradigm, context-aware security enables one to enforce security and privacy mechanisms adaptively. Moreover, with the advancements in edge computing, context-aware security services can dynamically be placed close to a user’s location and enable the support of low latency communication and mobility. Therefore, the design of an adaptive and decentralized access control mechanism becomes a necessity. In this paper, we propose a decentralized context-aware authorization management as a service based on the blockchain. The proposed architecture extends the Authentication and Authorization for Constrained Environments (ACE) framework with blockchain technology and context-awareness capabilities. Instead of a classic Open Authorization 2.0 (OAuth) access token, it uses a new contextual access token. The evaluation results show our proposition’s effectiveness and advantages in terms of usability, security, low latency, and energy consumption.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference51 articles.

1. Providing Context-Aware Security for IoT Environments Through Context Sharing Feature

2. Towards a Context-Aware Security and Privacy as a Service in the Internet of Things

3. Context-aware security in the internet of things: a survey

4. SETUCOM: Secure and Trustworthy Context Management for Context-Aware Security and Privacy in the Internet of Things

5. Authentication and Authorization for Constrained Environments (ACE) using the OAuth 2.0 Framework (ACE-OAuth); ACE Working Group Internet-Draft; IETF Datatracker 2018 Drafthttps://datatracker.ietf.org/doc/draft-ietf-ace-oauth-authz/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3