Abstract
Salinity stress is one of the serious restrictive issues for optimum crop production in arid to semi-arid areas. Application of organic amendments have shown positive effects on crop growth and yield under such scenario. The present study was conducted to estimate the potential of calcium-fortified composted animal manure (Ca-FCM) to enhance growth and yield of canola under saline soil conditions. Salt affected soils with various electrical conductivity (EC) levels (original 1.5, 5, and 10 dS m−1) were developed via spiking the soil with sodium chloride (NaCl) salt. The results reveal that soil salinity reduced the growth, physiological, yield, and nutritional parameters of canola. However, application of 3% calcium-fortified composted manure significantly enhanced the growth and yield parameters at all EC levels as compared to control. Plant physiological parameters such as photosynthetic rate, relative chlorophyll contents (SPAD value), and relative water content were also increased with the application of 3% Ca-FCM at all EC levels in comparison to control. Application of 3% Ca-FCM also mediated the antioxidant enzymes activities at all EC levels in comparison to control. Moreover, application of 3% Ca-FCM caused maximum increase in nitrogen, phosphorus, and potassium concentrations in shoot at all EC levels. Conversely, application of 3% Ca-FCM showed maximum decrease in Na+/K+ ratio in leaf up to 83.33%, 77.78%, and 71.43% at EC levels 1.5, 5, and 10 dS m−1, respectively, as compared to control. It was concluded that application of calcium-fortified composted animal manure (Ca-FCM) could be an efficient method for improving growth, yield, physiological, and nutritional parameters of canola through mediation of antioxidant defense machinery under saline soil conditions.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献