Tooth Movement Efficacy of Retraction Spring Made of a New Low Elastic Modulus Material, Gum Metal, Evaluated by the Finite Element Method

Author:

Tamaya Naohiko,Kawamura JunORCID,Yanagi Yoshinobu

Abstract

The aim of this study was to evaluate the tooth movement efficacy of retraction springs made of a new β-titanium alloy, “gum metal”, which has a low Young’s modulus and nonlinear super elasticity. Using double loop springs incorporated into an archwire made of gum metal (GUM) and titanium molybdenum alloy (TMA), the maxillary anterior teeth were moved distally to close an extraction space. The long-term movements were simulated by the finite element method. Its procedure was constructed of two steps, with the first step being the calculation of the initial tooth movement produced by elastic deformation of the periodontal ligament, and in the second step, the alveolar socket was moved by the initial tooth movement. By repeating these steps, the tooth moved by accumulating the initial tooth movement. The number of repeating calculations was equivalent to an elapsed time. In the GUM and TMA springs, the anterior teeth firstly tipped lingually, and then became upright. As a result of these movements, the canine could move bodily. The amount of space closure in GUM spring was 1.5 times that in TMA spring. The initial tipping angle of the canine in the GUM spring was larger than that in the TMA spring. The number of repeating calculations required for the bodily movement in the GUM spring was about two times that in the TMA spring. It was predicted that the speed of space closure in the GUM spring was smaller than that in the TMA spring.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3