Insight into the Interaction between Water and Ion-Exchanged Aluminosilicate Glass by Nanoindentation

Author:

Li Xiaoyu,Jiang Liangbao,Liu Jiaxi,Wang Minbo,Li Jiaming,Yan Yue

Abstract

This work aims to explore the interaction between water and ion-exchanged aluminosilicate glass. The surface mechanical properties of ion-exchanged glasses after different hydration durations are investigated. The compressive stress and depth of stress layer are determined with a surface stress meter on the basis of photo-elasticity theory. The hardness and Young’s modulus are tested through nanoindentation. Infrared spectroscopy is used to determine the variation in surface structures of the glass samples. The results show that hydration has obvious effects on the hardness and Young’s modulus of the raw and ion-exchanged glasses. The hardness and Young’s modulus decrease to different extents after different hydration times, and the Young’s modulus shows some recovery with the prolonging of hydration time. The ion-exchanged glasses are more resistant to hydration. The tin side is more resistant to hydration than the air side. The results are expected to serve as reference for better understanding the hydration process of ion-exchanged glass.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference47 articles.

1. Ion exchange for glass strengthening

2. Chemical Strengthening of Glass: Lessons Learned and Yet To Be Learned

3. Surface hydration and nanoindentation of silicate glasses

4. Evolution of the modulus and hardness of the tin and air sides of float glass as a function of hydration time;Gonzalez Rodriguez;Glass Technol. Eur. J. Glass Sci. Technol. Part A,2013

5. Investigation the effect of weathering on chemically strengthened flat glasses

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3