Laser Surface Alloying of Austenitic 316L Steel with Boron and Some Metallic Elements: Properties

Author:

Kulka MichałORCID,Mikołajczak Daria,Dziarski Piotr,Panfil-Pryka DominikaORCID

Abstract

Austenitic 316L stainless steel is known for its good resistance to corrosion and oxidation. However, under conditions of appreciable mechanical wear, this steel had to demonstrate suitable wear protection. In this study, laser surface alloying with boron and some metallic elements was used in order to improve the hardness and wear behavior of this material. The microstructure was described in the previous paper in detail. The microhardness was measured using Vickers method. The “block-on-ring” technique was used in order to evaluate the wear resistance of laser-alloyed layers, whereas, the potentiodynamic method was applied to evaluate their corrosion behavior. The produced laser-alloyed layers consisted of hard ceramic phases (Fe2B, Cr2B, Ni2B or Ni3B borides) in a soft austenitic matrix. The significant increase in hardness and wear resistance was observed in the case of all the laser-alloyed layers in comparison to the untreated 316L steel. The predominant abrasive wear was accompanied by adhesive and oxidative wear evidenced by shallow grooves, adhesion craters and the presence of oxides. The corrosion resistance of laser-alloyed layers was not considerably diminished. The laser-alloyed layer with boron and nickel was the best in this regard, obtaining nearly the same corrosion behavior as the untreated 316L steel.

Funder

Ministerstwo Nauki i Szkolnictwa Wyższego

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3