4-Mercaptopyridine-Modified Sensor for the Sensitive Electrochemical Detection of Mercury Ions

Author:

Han Mingjie12ORCID,Xie Yong12,Wang Ri12,Li Yang1ORCID,Bian Chao1,Xia Shanhong1

Affiliation:

1. State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China

2. School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100190, China

Abstract

As a highly toxic heavy metal ion, mercury ion (Hg2+) pollution has caused serious harm to the environment and human health. In this paper, 4-mercaptopyridine (4-MPY) was selected as the sensing material and decorated on the surface of a gold electrode. Trace Hg2+ could be detected by both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) methods. The proposed sensor displayed a wide detection range from 0.01 μg/L to 500 μg/L with a low limit of detection (LOD) of 0.002 μg/L by EIS measurements. Combined with molecular simulations and electrochemical analyses, the chelating mechanism between Hg2+ and 4-MPY was explored. Through the analysis of binding energy (BE) values and stability constants, 4-MPY showed an excellent selectivity for Hg2+. In the presence of Hg2+, the coordination of Hg2+ with the pyridine nitrogen of 4-MPY was generated at the sensing region, which caused a change in the electrochemical activity of the electrode surface. Due to the strong specific binding capability, the proposed sensor featured excellent selectivity and an anti-interference capability. Furthermore, the practicality of the sensor for Hg2+ detection was validated with the samples of tap water and pond water, which demonstrated its potential application for on-site environmental detection.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3