Affiliation:
1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou 510006, China
2. Guangdong Provincial Key Laboratory for Micro-Nano Manufacturing Technology and Equipment, School of Electro-Mechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China
Abstract
Hexagonal cube corner retroreflectors (HCCRs) are the micro-optics arrays with the highest reflectivity. However, these are composed of prismatic micro-cavities with sharp edges, and conventional diamond cutting is considered unmachinable. Besides, 3-linear-axis ultraprecision lathes were considered unfeasible to fabricate HCCRs due to the lack of a rotation axis. Therefore, a new machining method is proposed as a viable option to manufacture HCCRs on the 3-linear-axis ultraprecision lathes in this paper. For the mass production of HCCRs, the dedicated diamond tool is designed and optimized. The toolpaths are proposed and optimized to further increase tool life and machining efficiency. The Diamond Shifting Cutting (DSC) method is analyzed in-depth both theoretically and experimentally. By using the optimized methods, the large-area HCCRs with a structure size of 300 µm covering an area of 10 × 12 mm2 are successfully machined on 3-linear-axis ultraprecision lathes. The experimental results show that the whole array is highly uniform, and the surface roughness Sa of three cube corner facets is all less than 10 nm. More importantly, the machining time is reduced to 19 h, which is far less than the previous processing methods (95 h). This work will significantly reduce the production threshold and costs, which is important to promote the industrial application of HCCRs.
Funder
Science and Technology Program of Guangzhou
Science and Technology Innovation Program of Hunan Province
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献