Compensation Method for the Nonlinear Characteristics with Starting Error of a Piezoelectric Actuator in Open-Loop Controls Based on the DSPI Model

Author:

An Dong1,Li Ji1,Li Songhua1ORCID,Shao Meng1,Wang Weinan1,Wang Chuan1,Yang Yixiao2

Affiliation:

1. School of Mechanical Engineering, Shenyang Jianzhu University, Shenyang 110168, China

2. School of Microelectronics, Fudan University, Shanghai 200433, China

Abstract

Nanopositioning stages with piezoelectric actuators have been widely used in fields such as precision mechanical engineering, but the nonlinear start-up accuracy problem under open-loop control has still not been solved, and more errors will accumulate, especially under open-loop control. This paper first analyzes the causes of the starting errors from both the physical properties of materials and voltages: the starting errors are affected by the material properties of piezoelectric ceramics, and the magnitude of the voltage determines the magnitude of the starting errors. Then, this paper adopts an image-only model of the data separated by a Prandtl-Ishlinskii model (DSPI) based on the classical Prandtl-Ishlinskii model (CPI), which can improve the positioning accuracy of the nanopositioning platform after separating the data based on the start-up error characteristics. This model can improve the positioning accuracy of the nanopositioning platform while solving the problem of nonlinear start-up errors under open-loop control. Finally, the DSPI inverse model is used for the feedforward compensation control of the platform, and the experimental results show that the DSPI model can solve the nonlinear start-up error problem existing under open-loop control. The DSPI model not only has higher modeling accuracy than the CPI model but also has better performance in terms of compensation results. The DSPI model improves the localization accuracy by 99.427% compared to the CPI model. When compared with another improved model, the localization accuracy is improved by 92.763%.

Funder

National Science Foundation of China

basic scientific research project of the Education Department of Liaoning Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3