A Deep Learning Approach for Predicting Multiple Sclerosis

Author:

Ponce de Leon-Sanchez Edgar Rafael1ORCID,Dominguez-Ramirez Omar Arturo2ORCID,Herrera-Navarro Ana Marcela1ORCID,Rodriguez-Resendiz Juvenal3ORCID,Paredes-Orta Carlos4ORCID,Mendiola-Santibañez Jorge Domingo3ORCID

Affiliation:

1. Facultad de Informática, Universidad Autónoma de Querétaro, Querétaro 76230, Mexico

2. Centro de Investigación en Tecnologías de Información y Sistemas, Universidad Autónoma del Estado de Hidalgo, Pachuca 42039, Mexico

3. Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico

4. Centro de Investigaciones en Óptica, Aguascalientes 20200, Mexico

Abstract

This paper proposes a deep learning model based on an artificial neural network with a single hidden layer for predicting the diagnosis of multiple sclerosis. The hidden layer includes a regularization term that prevents overfitting and reduces the model complexity. The purposed learning model achieved higher prediction accuracy and lower loss than four conventional machine learning techniques. A dimensionality reduction method was used to select the most relevant features from 74 gene expression profiles for training the learning models. The analysis of variance test was performed to identify the statistical difference between the mean of the proposed model and the compared classifiers. The experimental results show the effectiveness of the proposed artificial neural network.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3