Spin Hall Effect in the Paraxial Light Beams with Multiple Polarization Singularities

Author:

Kovalev Alexey A.12ORCID,Kotlyar Victor V.12ORCID,Stafeev Sergey S.12ORCID

Affiliation:

1. Image Processing Systems Institute of the RAS—Branch of FSRC “Crystallography & Photonics” of the RAS, 151 Molodogvardeyskaya St., 443001 Samara, Russia

2. Samara National Research University, 34 Moskovskoe Shosse, 443086 Samara, Russia

Abstract

Elements of micromachines can be driven by light, including structured light with phase and/or polarization singularities. We investigate a paraxial vectorial Gaussian beam with multiple polarization singularities residing on a circle. Such a beam is a superposition of a cylindrically polarized Laguerre–Gaussian beam with a linearly polarized Gaussian beam. We demonstrate that, despite linear polarization in the initial plane, on propagation in space, alternating areas are generated with a spin angular momentum (SAM) density of opposite sign, that manifest about the spin Hall effect. We derive that in each transverse plane, maximal SAM magnitude is on a certain-radius circle. We obtain an approximate expression for the distance to the transverse plane with the maximal SAM density. Besides, we define the singularities circle radius, for which the achievable SAM density is maximal. It turns out that in this case the energies of the Laguerre–Gaussian and of the Gaussian beams are equal. We obtain an expression for the orbital angular momentum density and find that it is equal to the SAM density, multiplied by −m/2 with m being the order of the Laguerre–Gaussian beam, equal to the number of the polarization singularities. We consider an analogy with plane waves and find that the spin Hall affect arises due to the different divergence between the linearly polarized Gaussian beam and cylindrically polarized Laguerre–Gaussian beam. Application areas of the obtained results are designing micromachines with optically driven elements.

Funder

RUSSIAN SCIENCE FOUNDATION

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference32 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tight focusing of hybridly polarized optical vortex;Optik;2024-09

2. Tight Focusing of Optical Vortices with Hybrid Polarization;2024 Photonics & Electromagnetics Research Symposium (PIERS);2024-04-21

3. Enhancing the Spin Hall Effect of Cylindrically Polarized Beams;Micromachines;2024-02-29

4. Hall Effect in Paraxial Laser Beams;Optical Hall Effect in the Sharp Focus of Laser Light;2024

5. Spin Hall Effect of Two-Index Paraxial Vector Propagation-Invariant Beams;Photonics;2023-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3