LSTM-Based Deformation Prediction Model of the Embankment Dam of the Danjiangkou Hydropower Station

Author:

Wang Shuming,Yang Bing,Chen Huimin,Fang Weihua,Yu Tiantang

Abstract

The Danjiangkou hydropower station is a water source project for the middle line of the South-to-North Water Transfer Project in China. The dam is composed of riverbed concrete dam and earth rock dam on both banks, with a total length of 3442 m. Once the dam is wrecked, it will yield disastrous consequences. Therefore, it is very important to evaluate the dam safety behavior in time. Based on the long-term and short-term memory (LSTM) network, the deformation prediction models of the embankment dam of the Danjiangkou hydropower station are constructed. The models contain two LSTM layers, adopt the rectified linear unit function as the activation function and determine the super parameters of the models with Bayesian optimization algorithm. According to the settlement monitoring data of LD12ZT01 measuring point (dam crest 0 + 648) on the left bank of the embankment dam of the Danjiangkou hydropower station from July 2013 to March 2022, the LSTM and bidirectional LSTM models are constructed. In total, 80% of the monitoring data are taken as the training set data and 20% of the monitoring data are taken as the test set data. The mean absolute error, root mean square error and mean square error for the test set are 0.42978, 0.56456 and 0.31873 for partial least squares regression (PLSR), 0.35264, 0.47561 and 0.22621 for LSTM and 0.34418, 0.45400 and 0.20612 for bidirectional LSTM, respectively. The results show that the bidirectional LSTM model can obtain better deformation prediction value than the LSTM model and the PLSR. Then, the bidirectional LSTM model is used to predict the settlement value of LD16YT01 measuring point (dam crest 0 + 658) on the right bank, and the mean absolute error, root mean square error and mean square error for the test set are 0.5425, 0.66971 and 0.4520, respectively. This shows the bidirectional LSTM model can effectively predict the settlement value of the embankment dam of the Danjiangkou hydropower station.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3