Impact of Boundary Conditions Dynamics on Groundwater Budget in the Campania Region (Italy)

Author:

Gaiolini MattiaORCID,Colombani NicolòORCID,Busico GianluigiORCID,Rama FabrizioORCID,Mastrocicco MicòlORCID

Abstract

Groundwater budgets and fluxes are affected by human activities and climate change. Numerical models are cost-effective tools to investigate the different components of the hydrologic cycle. In this study, a groundwater flow model of the unconfined aquifers of the Campania region (Italy) has been developed and calibrated in Processing Modflow 11, resulting in an accurate assessment of groundwater fluxes and their trends over fifteen years (2000–2015). The model was implemented using a high-resolution grid to capture small hydrogeological features such as wells and rivers and informed by time variable datasets used as boundary conditions (i.e., river and sea levels, aquifer recharge, evapotranspiration, and discharge from adjacent systems). Good calibration and validation performances were achieved for piezometric heads (R2 = 0.958). A set of scenarios was developed using constant boundary conditions (i.e., constant sea-level BC, uniform extinction depth BC), and the outputs were compared, quantitively assessing differences in groundwater fluxes. Simulations pointed out that using time series to inform boundary conditions in the model does not always result in a significant change in the computed fluxes. Overall, non-uniform extinction depth was the most influential condition, while both rivers and sea level conditions barely affected groundwater budgets. In addition, results highlighted the need for an accurate estimation of spatiotemporal variations of both recharge and evapotranspiration, due to their strong seasonal variability and their massive contribution to the hydrogeological cycle. Finally, a marked increase of evapotranspiration fluxes controlled by interannual variability of precipitation and atmospheric temperatures has been quantified over the modelled period.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3