BIM-VE-Based Optimization of Green Building Envelope from the Perspective of both Energy Saving and Life Cycle Cost

Author:

Yuan Zhenmin,Zhou Jianliang,Qiao Yaning,Zhang Yadi,Liu Dandan,Zhu Hui

Abstract

In the context of the increasingly severe energy crisis and global warming, green buildings and their energy-saving issues are being paid more attention in the world. Since envelope optimization can significantly reduce the energy consumption of green buildings, value engineering (VE) technology and building information modeling (BIM) technology are used to optimize the envelope of green buildings, which takes into account both energy saving and life cycle cost. The theoretical framework of optimization for green building envelope based on BIM-VE is proposed, including a BIM model for architecture, a life cycle cost analysis model, energy-saving analysis model, and a value analysis model. In the life-cycle cost model, a mathematical formula for the life-cycle cost is established, and BIM technology is used to generate a bill of quantity. In the energy-saving analysis model, a mathematical formula for energy saving is established, and BIM technology is used for the building energy simulation. In the scheme decision-making sub-model, VE technology integrating life cycle cost with energy saving is used to assess the envelope schemes and select the optimal one. A prefabricated project case is used to simulate and test the established methodology. The important results show that the 16 envelope schemes make the 16 corresponding designed buildings meet the green building evaluation standards, and the optimal envelope scheme is the “energy-saving and anti-theft door + exterior window 2+ floor 1+ exterior wall 1 + inner shear wall + inner partition wall 2 + planted roof” with the value 10.80 × 10−2 MW·h/ten thousand yuan. A significant finding is that the value generally rises with the increase of energy-saving rate while the life cycle cost is irregular with the increase of energy-saving rate. Compared with previous efforts in the literature, this study introduces VE technology into architectural design to further expand the current boundary of building energy-saving theory. The findings and suggestions will provide a valuable reference and guidance for the architectural design industry to optimize the envelope of green buildings from the perspective of both energy saving and life cycle cost.

Funder

the Fundamental Research Funds for the Central Universities

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3