Co-Training for Unsupervised Domain Adaptation of Semantic Segmentation Models

Author:

Gómez Jose L.ORCID,Villalonga GabrielORCID,López Antonio M.ORCID

Abstract

Semantic image segmentation is a core task for autonomous driving, which is performed by deep models. Since training these models draws to a curse of human-based image labeling, the use of synthetic images with automatically generated labels together with unlabeled real-world images is a promising alternative. This implies addressing an unsupervised domain adaptation (UDA) problem. In this paper, we propose a new co-training procedure for synth-to-real UDA of semantic segmentation models. It performs iterations where the (unlabeled) real-world training images are labeled by intermediate deep models trained with both the (labeled) synthetic images and the real-world ones labeled in previous iterations. More specifically, a self-training stage provides two domain-adapted models and a model collaboration loop allows the mutual improvement of these two models. The final semantic segmentation labels (pseudo-labels) for the real-world images are provided by these two models. The overall procedure treats the deep models as black boxes and drives their collaboration at the level of pseudo-labeled target images, i.e., neither modifying loss functions is required, nor explicit feature alignment. We test our proposal on standard synthetic and real-world datasets for onboard semantic segmentation. Our procedure shows improvements ranging from approximately 13 to 31 mIoU points over baselines.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context-aware adaptive network for UDA semantic segmentation;Multimedia Systems;2024-07-05

2. Guiding Attention in End-to-End Driving Models;2024 IEEE Intelligent Vehicles Symposium (IV);2024-06-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3