The Impact of Spatial Delineation on the Assessment of Species Recovery Outcomes

Author:

Grace Molly K.,Akçakaya H. ResitORCID,Bennett Elizabeth L.,Boyle Michael J. W.ORCID,Hilton-Taylor CraigORCID,Hoffmann MichaelORCID,Money DanielORCID,Prohaska AnaORCID,Young Rebecca,Young Richard,Long Barney

Abstract

In 2021, the International Union for Conservation of Nature (IUCN) introduced a novel method for assessing species recovery and conservation impact: the IUCN Green Status of Species. The Green Status standardizes recovery using a metric called the Green Score, which ranges from 0% to 100%. This study focuses on one crucial step in the Green Status method—the division of a species’ range into so-called “spatial units”—and evaluates whether different approaches for delineating spatial units affect the outcome of the assessment (i.e., the Green Score). We compared Green Scores generated using biologically based spatial units (the recommended method) to Green Scores generated using ecologically based or country-based spatial units for 29 species of birds and mammals in Europe. We found that while spatial units delineated using ecoregions and countries (fine-scale) produced greater average numbers of spatial units and significantly lower average Green Scores than biologically based spatial units, coarse-scale spatial units delineated using biomes and countries above a range proportion threshold did not differ significantly from biologically based results for average spatial unit number or average Green Score. However, case studies focusing on results for individual species (rather than a group average) showed that, depending on characteristics of the species’ distribution, even these coarse-scale delineations of ecological or country spatial units often over- or under-predict the Green Score compared to biologically based spatial units. We discuss cases in which the use of ecologically based or country-based spatial units is recommended or discouraged, in hopes that our results will strengthen the new Green Status framework and ensure consistency in application.

Funder

Natural Environment Research Council

Prince Albert II of Monaco Foundation

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3