Abstract
Genetic diversity analysis of crop genetic resources is a prerequisite for parental selection with suitable and complementary profiles for breeding. The objectives of this study were to determine genetic diversity present among okra accessions using simple sequence repeat (SSR) and complementary phenotypic markers and to select genetically divergent and superior parental accessions for pre-breeding. Twenty-six preliminarily selected okra accessions were assessed using nine highly polymorphic SSR markers and phenotyped under drought-stressed (DS) and non-stressed (NS) environmental conditions using a 13 × 2 alpha lattice design with two replications. Data were collected on the following eleven phenotypic traits: plant height (PH), days to 50% maturity (DTM), fresh pod length (FPL), dry pod weight (DPW), dry pod length (DPL), number of pods per plant (NPPP), pod yield per plant (PYPP), total above-ground biomass (AGB), harvest index (HI), root weight (RW), and root to shoot ratio (RSR). The SSR markers revealed an expected mean heterozygosity value of 0.54, indicating moderate genetic diversity among the tested okra accessions. Cluster analysis based on phenotypic and SSR markers differentiated the accessions into three distinct genetic groups. Wide phenotypic variation was observed for PH, FPL, NPPP, and PYPP under NS and DS conditions. PYPP was positively and significantly correlated with FPL (r = 0.81), ABG (r = 0.69), and HI (r = 0.67) under DS conditions, and FPL (r = 0.83) and AGB (r = 0.60) under NS conditions. Genetically complementary accessions such as LS04, LS05, LS06, LS07, LS08, LS10, LS11, LS15, LS18, LS23, LS24, and LS26 were identified for their high yield potential and related yield-improving traits under DS conditions. The identified accessions are recommended as parents for hybridization and selection programs to improve the yield potential of okra under drought-stressed environments.
Funder
National Research Foundation
Agricultural Research Council of South Africa
Moses Kotane Institute
Subject
Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献