Abstract
Recent studies have shown that ablation techniques have the potential to eradicate adrenal adenomas while preserving the functionalities of the adrenal gland and the surrounding anatomical structures. This study explores a new microwave ablation (MWA) approach operating at 5.8 GHz and using anatomical and dielectric characteristics of the target tissue to create directional heating patterns. Numerical simulations are executed in planar and 3D adrenal models, considering two energy doses. The numerical study is refined accounting for the vaporization of the tissue water content. Ex vivo experimental evaluations on porcine adrenal models complete the study. The numerical and experimental results show that spherical ablation zones are able to cover the target for both energy doses considered. Nonetheless, most of the non-targeted tissues can be preserved from excessive heating when low energy level is used. Numerical models accounting for water vaporization are capable to foresee the experimental temperature values. This study shows that the proposed MWA directional approach operating at 5.8 GHz can be considered for creating effective and selective ablation zones.
Funder
European Research Council
COST Action MyWAVE CA17115
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献