Microstructure and Magnetic Field-Induced Strain of a Ni-Mn-Ga-Co-Gd High-Entropy Alloy

Author:

Ju Jia,Hu Liang,Bao Chenwei,Shuai Liguo,Yan Chen,Wang Zhirong

Abstract

The effect of a high-entropy design on martensitic transformation and magnetic field-induced strain has been investigated in the present study for Ni-Mn-Ga-Co-Gd ferromagnetic shape-memory alloys. The purpose was to increase the martensitic transition temperature, as well as the magnetic field-induced strain, of these materials. The results show that there is a co-existence of β, γ, and martensite phases in the microstructure of the alloy samples. Additionally, the martensitic transformation temperature shows a markedly increasing trend for these high-entropy samples, with the largest value being approximately 500 °C. The morphology of the martensite exhibits typical twin characteristics of type L10. Moreover, the magnetic field-induced strain shows an increasing trend, which is caused by the driving force of the twin martensite re-arrangement strengthening.

Funder

the Natural Science Foundation of Jiangsu Province of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3