Investigation of Biotoxicity and Environmental Impact of Prometryn on Fish and Algae Coexistent System

Author:

Yang Zhenjiang1,Zhao Daoquan2,Gu Jinxing1,Wu Ran1,Liu Bianzhi1ORCID,Yu Guangqing1,Dong Pengsheng1,Huang Xiaocheng1,Li Ming1,Li Guoxi1ORCID

Affiliation:

1. College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China

2. Research Station for Field Scientific Observation of Aquatic Organisms in Yiluo River, Yellow River Basin, Sanmenxia 472200, China

Abstract

To investigate the toxic and environmental effects of prometryn, a laboratory experiment was performed on coexistent fish and algae. The body weight and length of Carassius carassius, Microcystis aeruginosa (M. aeruginosa) densities and water quality were measured continuously for 92 days. It was observed that fish growth was significantly inhibited by prometryn. This can be partly attributed to the adverse effects of prometryn on the antioxidant system of fish; the activities of superoxide dismutase (SOD) and catalase (CAT) in crucian carp were significantly inhibited by prometryn. The growth of M. aeruginosa was greatly inhibited by prometryn (p < 0.05), and the adverse effects of prometryn on M. aeruginosa indirectly impacted water qualities. The body weight and length of Carassius carassius first increased and then tended to be stable with increasing electrical conductivity (EC) values; their quantified relationship was established based on the Gompertz and Logistic equations (R2 = 0.920–0.989). Based on the above results, we concluded that the toxic effects of prometryn can impact the antioxidant system of fish and algae which in turn affects their growth performance, and have an indirect impact on water quality. The application of equations made it realizable to obtain a more detailed interpretation of the processes involved in these biological–abiotic interactions.

Funder

Henan Agricultural University High-level Talents Special Support Fund

Key Science and Technology Projects in Henan Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3