Evaluation of XD 10 Polyamide Electrospun Nanofibers to Improve Mode I Fracture Toughness for Epoxy Adhesive Film Bonded Joints

Author:

Minosi Stefania1ORCID,Moroni Fabrizio1ORCID,Pirondi Alessandro1ORCID

Affiliation:

1. Department of Engineering and Architecture, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy

Abstract

The demand for ever-lighter structures raises the interest in bonding as a joining method, especially for materials that are difficult to join with traditional welding and bolting techniques. Structural adhesives, however, are susceptible to defects, but can be toughened in several ways: by changing their chemical composition or by adding fillers, even of nanometric size. Nanomaterials have a high surface area and limited structural defects, which can enhance the mechanical properties of adhesives depending on their nature, quantity, size, and interfacial adhesion. This work analyzes the Mode I fracture toughness of joints bonded with METLBOND® 1515-4M epoxy film and XantuLayr electrospun XD 10 polyamide nanofibers. Two joint configurations were studied, which differed according to the position of the nanomat within the adhesive layer: one had the nanofibers at the substrate/adhesive interfaces, and the other had the nanofibers in the center of the adhesive layer. Double cantilever beam joints were manufactured to evaluate the Mode I fracture toughness of the bonding with and without nano-reinforcement. The nanofibers applied at the substrate/adhesive interface improved the Mode-I fracture toughness by 32%, reaching the value of 0.55 N/mm. SEM images confirm the positive contribution of the nanofibers, which appear stretched and pulled out from the matrix. No fracture toughness variation was detected in the joints with the nanofibers placed in the middle of the adhesive layer.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3