Affiliation:
1. School of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 102249, China
2. School of Chemical Engineering, Southwest Petroleum University, Shanghai 610500, China
Abstract
Thermal desorption technologies have been extensively applied for the disposal of oil-based drill cuttings. Fluent-software-based phase changes in multiphase flow models within thermal desorption chamber temperature field simulations were examined to study the effects of oil-based drill cuttings fluid content and feed rates, nitrogen content, thermal desorption chamber length and diameter, and extraction tube position on the thermal desorption chamber and temperature field. Our results demonstrate that these factors had a considerable influence on the temperature field of the chamber, with the liquid content of the oil-based drill cuttings having the greatest influence. The heat transfer process was enhanced by appropriately increasing the diameter and length of the chamber and reasonably setting the extraction tube. When the chamber length was insufficient, there was a risk that the outlet temperature would be extremely low and the oil content of the residue would exceed the standard. The higher the feeding and nitrogen entering rates of the oil cuttings, the higher the liquid content of the oil cuttings and the lower the temperature in the chamber. Based on the heat transfer characteristics of the oil-based drill cuttings in the thermal desorption chamber, this study provides a theoretical basis for the design and application of oil-bearing cutting thermal desorption devices.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献