Security-Guaranteed PID Control for Discrete-Time Systems Subject to Periodic Dos Attacks

Author:

Hou Nan123,Zhang Duo123,Yang Fan123,Li Weijian123,Sui Yang4

Affiliation:

1. Sanya Offshore Oil & Gas Research Institute, Northeast Petroleum University, Sanya 572025, China

2. Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing 163318, China

3. Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, Northeast Petroleum University, Daqing 163318, China

4. Daqing Emergency Repair Center of National Pipe Network Group North Pipeline Co., Ltd., Daqing 163453, China

Abstract

This paper is concerned with the observer-based H∞ proportional-integral-derivative (PID) control issue for discrete-time systems using event-triggered mechanism subject to periodic random denial of service (DoS) jamming attacks and infinitely distributed delays. In order to characterize the occurrence of periodic random DoS jamming attacks in the network channel between controller and actuator, the Kronecker delta function is used to represent the periodic switching between the sleeping period and attack period, and a Bernoulli-distributed random variable is utilized to reflect the probabilistic occurrence of DoS attacks. Infinitely distributed delay is involved to reflect actual state lag. The relative event-triggering mechanism is employed to reduce unnecessary information transmission and save communication energy in the network channel between sensor and observer. An observer-based PID controller is constructed for the regulation of the system to achieve an appropriate working effect. The aim of this paper is to design a security-guaranteed PID controller for delayed systems such that both the exponential mean-square stability and the H∞ performance are satisfied. Using the Lyapunov stability theory, stochastic analysis method and matrix inequality technique, a sufficient condition is put forward that ensures the existence of the required observer and PID controller. Gain parameters of the observer and the PID controller are computed by solving a certain matrix inequality. A simulation is carried out to verify the effectiveness of the developed observer-based H∞ PID control method. The obtained H∞ noise rejection level is below 0.85, the average event-based release interval is 13, the absolute values of the maximum estimation error of two elements in the system state are 1.434 and 0.371 using the observer, and two elements of the system state converge to 0.238 and −0.054 at the 41th time step with two elements of the control output being 0.031 and 0.087.

Funder

National Natural Science Foundation of China

Hainan Province Science and Technology Special Fund of China

Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City of China

Natural Science Foundation of Heilongjiang Province of China

Fundamental Research Funds for Undergraduate Universities Affiliated to Heilongjiang Province of China

Alexander von Humboldt Foundation of Germany

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3