Research on the Frequency Response and Dynamic Range of the Quadrature Fiber Optic Fabry–Perot Cavity Microphone Based on the Differential Cross Multiplication Demodulation Algorithm

Author:

Ren Baokai,Cheng Jin,Zhao Longjiang,Zhu Zhenghou,Zou Xiaoping,Qin Lei,Wang YifeiORCID

Abstract

A quadrature fiber optic Fabry–Perot cavity microphone based on a differential cross multiplication algorithm consists of a pair of fibers and a membrane. It has many advantages such as high sensitivity, a simple structure, and resistance to electromagnetic interference. However, there are no systematic studies on its key performance, for example, its frequency response and dynamic range. In this paper, a comprehensive study of these two key parameters is carried out using simulation analysis and experimental verification. The upper limit of the frequency response range and the upper limit of the dynamic range influence each other, and they are both affected by the data sampling rate. At a certain data sampling rate, the higher the upper limit of the frequency response range is the lower the upper limit of the dynamic range. The quantitative relationship between them is revealed. In addition, these two key parameters also are affected by the quadrature phase deviation. The quadrature phase deviation should not exceed 0.25π under the condition that the demodulated signal intensity is not attenuated by more than 3 dB. Subsequently, a short-step quadrature Fabry–Perot cavity method is proposed, which can suppress the quadrature phase deviation of the quadrature fiber optic Fabry–Perot cavity microphone based on the differential cross multiplication algorithm.

Funder

Natural Science Foundation of Beijing

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of High-precision Optical Heterodyne Interferometer Phase Demodulation System;2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE);2022-09-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3