Effect of the Design Parameters of the Combustion Chamber on the Efficiency of a Thermal Oxidizer

Author:

Cao Quang Hat,Lee Sang-Wook

Abstract

Carbon monoxide is often produced during the incomplete combustion of volatile organic carbon compounds in industry. In the combustion chamber for oxidizing carbon monoxide emissions, a penta-coaxial port device can be used to improve the process of mixing the fuel and oxidizer. In this study, the conjugate heat transfer analysis was conducted by solving both Reynolds-averaged Navier–Stokes equations with the eddy dissipation model and solid heat conduction equation in the wall using Fluent 2019R2 to simulate the reaction flow of a volatile organic carbon compound burner and heat transfer of the stack insulation layer. The mass fractions of the O2, CO2, and CO gases; the temperature; and the velocity distribution in a combustion chamber were computed to investigate how various design parameters of the combustor, including air inlet size and stack height, and air inflow conditions affected the combustion performance. Results show that the size of the air inlet had only a minor effect on combustion efficiency and that the airstream forced by a fan significantly enhanced the combustion performance. In particular, increasing the height of the stack from 2 m to 4 m greatly increased combustion efficiency from 63% to 94%, with a 50% increase in the incoming air flow rate by natural convection, which demonstrates the importance of stack height in combustor design.

Funder

Ministry of Education and the National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3