Novel Energy Management Control Strategy for Improving Efficiency in Hybrid Powertrains

Author:

Broatch AlbertoORCID,Olmeda Pablo,Plá Benjamín,Dreif Amin

Abstract

Energy management in electrified vehicles is critical and directly impacts the global operating efficiency, durability, driveability, and safety of the vehicle powertrain. Given the multitude of components of these powertrains, the complexity of the proper control is significantly higher than the conventional internal combustion engine vehicle (ICEV). Hence, several control algorithms and numerical methods have been developed and implemented in order to optimize the operation of the hybrid powertrain while complying with the required boundary conditions. In this work, a model-based method is used for predicting the impacts of a set of possible control actions, choosing the one minimizing the associated costs. In particular, the energy management technique used in the present study is the equivalent consumption minimization strategy (ECMS). The novelty of this work consists of taking into account the thermal state of the ICE for optimization. This feature was implemented by means of an extensive experimental campaign at different coolant temperatures of the ICE to calibrate the additional fuel consumption due to operating the engine outside of its optimum temperature. The results showed significant gains in both WLTC and RDE cycles.

Funder

Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital in the framework of the Ayuda Predoctoral GVA

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3