Comparison of the Carbon Payback Period (CPP) of Different Variants of Insulation Materials and Existing External Walls in Selected European Countries

Author:

Sadowski Kajetan1ORCID

Affiliation:

1. Faculty of Architecture, Wrocław University of Science and Technology, 50-317 Wrocław, Poland

Abstract

The EU “Fit for 55” legislative package provides for the introduction of regulations enabling the achievement of the emission reduction target by 55%. As part of the necessary actions, it is necessary to increase the energy efficiency of existing buildings. To achieve this, there are plans to increase the pace of the modernization of buildings, from 1% to 3% of buildings annually by 2030. However, this must be done with respect to the principles of sustainable development, circular economy and the conservation of buildings. This article presents a comprehensive comparison and calculation of carbon payback period (CPP) for selected insulation materials, combined with selected typical building partitions, and shows how quickly the payback period of greenhouse gases in the production of insulation materials is completed. Individual insulation materials (stone and glass wool, expanded polystyrene (EPS), extruded polystyrene (XPS), polyurethane (PUR) and cellulose) were analyzed in relation to different types of walls (seven types—including solid wall, diaphragm wall, large panel system (LPS), and concrete), in different locations (Poland, Germany, Czech Republic, Austria, Finland, Europe) and for various energy sources (electricity, gas, oil, biomass, district heating). After taking into account the carbon footprint embodied in the insulation materials, along with the potential reductions in the operational greenhouse gases emissions, the carbon payback period (CPP) was determined, resulting from the use of a given technology, insulation material and location. By comparing the CPPs for different insulations, this paper shows that the results vary significantly between EU countries, which have different embodied carbon factors for energy sources and materials, and that there is still a serious lack in the availability of reliable environmental information, which can limit research results.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference74 articles.

1. (2022, August 29). European Parliament and the Council Directive (EU) 2010/31 of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast). Available online: http://data.europa.eu/eli/dir/2010/31/oj.

2. (2022, August 29). European Parliament and the Council Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency. Available online: http://data.europa.eu/eli/dir/2018/844/oj/eng.

3. United Nations Environment Programme (2020). 2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector, Communication Division, United Nations Environment Programme.

4. (2022, August 29). COM(2011) 571 Final, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and Committee of the Regions, the Roadmap to a Resource Efficient Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52011DC0571.

5. European Commission (2022, August 29). 2050 Long-Term Strategy. Available online: https://ec.europa.eu/clima/policies/strategies/2050_en.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3