Abstract
Comparative tests in air and oxy-fuel combustion were conducted in a 30 kWth circulating fluidized bed (CFB) pilot plant for waste sludge combustion. General combustion characteristics of the CFB, such as pressure profiles, temperatures along the bed, and flue gas composition, were different under the air and oxy-fuel conditions. At the bottom and in the fly ash, alkali and heavy metals had different distributions under the air and oxy-fuel combustion conditions. The particle size distribution in fly ash from air combustion was dominated by coarse particles, over 2.5 μm in size, whereas with oxy-fuel combustion, most particles were submicron in size, approximately 0.1 μm, and a smaller quantity of coarse particles, over 2.5 μm in size, formed than with air combustion. Mass fractions of Al, Ca, and K, below 2.5 μm in size, were found in the ashes from oxy-fuel combustion and in higher quantity than those found in air combustion. Submicron particle formation from Cr, Ni, Cu, and Zn in the fly ash occurred more during oxy-fuel combustion than it did in air combustion.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction