A Novel Mesoporous Carbon as Potential Conductive Additive for a Li-Ion Battery Cathode

Author:

Vélez Victor,López Betty,Palacio RubenORCID,Sierra LigiaORCID

Abstract

A new mesoporous carbon (MC) is obtained from pyrolysis of resorcinol/formaldehyde resin, polymerized in the presence of tetraethoxysilane and Pluronic F108, followed by pyrolysis at 800 °C and silica removal. The reaction mixture in a molar ratio of 1F108/60resorcinol/292 formaldehyde/16900 H2O/50 tetraethoxysilane heated at 67 °C produces MC nanoparticles (200 nm average size) exhibiting 3D bimodal mesopores (3.9 and 8.2 nm), 1198 m2/g surface area, 1.8 cm3/g pore volume, and important graphitic character for use as a conductive material. Composites LiFePO4/carbon prepared with MC or commercial Super P, by the slurry method, were tested as coin Li-ion battery (LiB) cathodes. Super P (40 nm average particle size) exhibits better graphitic character, but lower porosity than MC. LiFePO4/MC shows better specific capacity (161 mAhg−1) than LiFePO4/Super P (126 mAhg−1), with a retention capacity (RC) after cycling at C/10 of 81%. Both composites with MC and Super P show well-distributed particles. According to impedance analysis, MC mesoporosity improves the charge transfer kinetics (CTK) more than Super P, producing a cathode with higher efficiency, although lithium ions’ diffusion decreases because larger MC particles form longer diffusion paths. Owing to the good specific capacity of the LiB cathode prepared with MC, research looking into improving its retention capacity should be a focus.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3