A New Architecture Based on IoT and Machine Learning Paradigms in Photovoltaic Systems to Nowcast Output Energy

Author:

Almonacid-Olleros Guillermo,Almonacid Gabino,Fernandez-Carrasco Juan Ignacio,Espinilla-Estevez MacarenaORCID,Medina-Quero JavierORCID

Abstract

The classic models used to predict the behavior of photovoltaic systems, which are based on the physical process of the solar cell, are limited to defining the analytical equation to obtain its electrical parameter. In this paper, we evaluate several machine learning models to nowcast the behavior and energy production of a photovoltaic (PV) system in conjunction with ambient data provided by IoT environmental devices. We have evaluated the estimation of output power generation by human-crafted features with multiple temporal windows and deep learning approaches to obtain comparative results regarding the analytical models of PV systems in terms of error metrics and learning time. The ambient data and ground truth of energy production have been collected in a photovoltaic system with IoT capabilities developed within the Opera Digital Platform under the UniVer Project, which has been deployed for 20 years in the Campus of the University of Jaén (Spain). Machine learning models offer improved results compared with the state-of-the-art analytical model, with significant differences in learning time and performance. The use of multiple temporal windows is shown as a suitable tool for modeling temporal features to improve performance.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comparative study of machine learning approaches for an accurate predictive modeling of solar energy generation;Energy Reports;2024-12

2. Critical Review;Biomass and Solar‐Powered Sustainable Digital Cities;2024-09-10

3. Federated Learning Methodology for Indoor Location Systems in Multi-Layer Architecture;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

4. IoT-based Deep Learning Neural Network (DLNN) algorithm for voltage stability control and monitoring of solar power generation;Advances in Production Engineering & Management;2023-12-28

5. Overview: Photovoltaic Solar Cells, Science, Materials, Artificial Intelligence, Nanotechnology and State of the Art;Trends and Innovations in Energetic Sources, Functional Compounds and Biotechnology;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3