A Data-Driven Prediction Method for an Early Warning of Coccidiosis in Intensive Livestock Systems: A Preliminary Study

Author:

Borgonovo Federica,Ferrante ValentinaORCID,Grilli Guido,Pascuzzo Riccardo,Vantini Simone,Guarino MarcellaORCID

Abstract

Coccidiosis is still one of the major parasitic infections in poultry. It is caused by protozoa of the genus Eimeria, which cause concrete economic losses due to malabsorption, bad feed conversion rate, reduced weight gain, and increased mortality. The greatest damage is registered in commercial poultry farms because birds are reared together in large numbers and high densities. Unfortunately, these enteric pathologies are not preventable, and their diagnosis is only available when the disease is full-blown. For these reasons, the preventive use of anticoccidials—some of these with antimicrobial action—is a common practice in intensive farming, and this type of management leads to the release of drugs in the environment which contributes to the phenomenon of antibiotic resistance. Due to the high relevance of this issue, the early detection of any health problem is of great importance to improve animal welfare in intensive farming. Three prototypes, previously calibrated and adjusted, were developed and tested in three different experimental poultry farms in order to evaluate whether the system was able to identify the coccidia infection in intensive poultry farms early. For this purpose, a data-driven machine learning algorithm was built, and specific critical values of volatile organic compounds (VOCs) were found to be associated with abnormal levels of oocystis count at an early stage of the disease. This result supports the feasibility of building an automatic data-driven machine learning algorithm for an early warning of coccidiosis.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3