Climate Change Influence on the Potential Distribution of Some Cavity-Nesting Bees (Hymenoptera: Megachilidae)

Author:

Okely Mohammed1,Engel Michael S.2ORCID,Shebl Mohamed A.3ORCID

Affiliation:

1. Entomology Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt

2. Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA

3. Department of Plant Protection, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt

Abstract

As climatic and other impactful environmental changes continue to gain momentum pollination, services are poised to be harmed, and wild bee species are not an exception. In the present study, maximum entropy (MaxEnt) modeling was used to predict the potential climatic niches of five wild bee species, namely, Chalicodoma flavipes, Chalicodoma sicula, Coelioxys coturnix, Megachile minutissima, and Osmia submicans (all of Megachilidae: Megachilinae). The Maxent model performed better than random for the five species, and all model predictions were significantly robust, giving ratios above null expectations. Under future climate change scenarios, the Maxent model predicted habitat loss for C. flavipes, C. sicula, and M. minutissima in North Africa and habitat loss for O. submicans in Europe and North Africa in all scenarios. Conversely, the study showed that the cleptoparasitic bee Co. coturnix would expand their suitable habitat in most scenarios in Europe, Asia, and the United States, although this species would also suffer habitat loss in North Africa in two scenarios. Between the present situation and future scenarios, the potential distribution for all species decreased in their suitable habitat, with the exception of Co. coturnix. The present results are of considerable value for informed conservation programs and policy decisions regarding wild pollinators.

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3