Increased Abundance Coincides with Range Expansions and Phenology Shifts: A Long-Term Case Study of Two Noctuid Moths in Sweden

Author:

Betzholtz Per-Eric1ORCID,Forsman Anders1ORCID,Franzén Markus1

Affiliation:

1. Department of Biology and Environmental Science, Linnaeus University, SE-39182 Kalmar, Sweden

Abstract

Environmental and climatic changes are inducing population declines in numerous species. However, certain species demonstrate remarkable resilience, exhibiting both population growth and range expansion. This longitudinal study in Sweden carried out over two decades (2004–2023) examines the noctuid moths Mythimna albipuncta and Hoplodrina ambigua. Abundance and phenology data were gathered from three light traps in southeastern Sweden and integrated with distribution and phenology data from the Global Biodiversity Information Facility. In M. albipuncta, the distribution area expanded from 7 to 76 occupied grids (60 km2) and the abundance increased from 7 to 6136 individuals, while in H. ambigua, the distribution area expanded from 1 to 87 occupied grids and the abundance increased from 0 to 6937 individuals, during the course of the study. Furthermore, a positive yearly association was observed between the number of occupied grids and light trap abundance for each species. We also found significant extensions in the adult flight periods of more than 100 days in both species. Light traps emerged as an effective monitoring tool, with light trap abundance as a reliable proxy for distribution changes. Our findings demonstrate that the studied species cope very well with environmental and climatic changes. Given their role as dominant links between primary producers and higher trophic levels, abundance and distribution shifts of these ecological engineers have the potential to cascade up and down in the ecosystem.

Funder

Linnaeus University

Swedish National Research Programme on Climate and Formas

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3