Modelling Prospective Flood Hazard in a Changing Climate, Benevento Province, Southern Italy

Author:

Guerriero LuigiORCID,Ruzza GiuseppeORCID,Calcaterra DomenicoORCID,Di Martire DiegoORCID,Guadagno Francesco M.ORCID,Revellino PaolaORCID

Abstract

The change of the Earth’s climate and the increasing human action (e.g., increasing impervious areas) are influencing the recurrence and magnitude of flooding events and consequently the exposure of urban and rural communities. Under these conditions, flood hazard analysis needs to account for this change through the adoption of nonstationary approaches. Such methods, showing how flood hazard evolves over time, are able to support a long-term plan of adaptation in hazard changing perspective, reducing expected annual damage in flood prone areas. On this basis, in this paper a reevaluation of flood hazard in the Benevento province of southern Italy, is presented, providing a reduced complexity methodological framework for near future flood hazard prediction under nonstationary conditions. The proposed procedure uses multiple nonstationary probability models and a LiDAR-derived high-resolution inundation model to provide present and future flood scenarios in the form of hazard maps. Such maps are derived using a spatialization routine of stage probability across the inundation model that is able to work at different scales. The analysis indicates that, overall, (i) flood hazard is going to decrease in the next 30 years over the Benevento province and (ii) many areas of the Calore river floodplain are going to be subject to higher return level events. Consequently, many areas would require new guidelines of use as the hazard level decreases. Limitations of the analysis are related to the choice of the probability model and the parameter estimation approach. A further limit is that, currently, this method is not able to account for the presence of mitigation measurements. However, result validation indicates a very high accuracy of the proposed procedure with a matching degree, with a recently observed 225-years flood, estimated in 98%. On this basis, the proposed framework can be considered a very important approach in flood hazard estimation able to predict near future evolution of flood hazard as modulated by the ongoing climate change.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3